HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling

نویسندگان

  • Qingsong Huang
  • Zhiguo Niu
  • Jingxian Han
  • Xihong Liu
  • Zhuangwei Lv
  • Huanhuan Li
  • Lixiang Yuan
  • Xiangping Li
  • Shuming Sun
  • Hui Wang
  • Xinxiang Huang
چکیده

Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tax-1 and Tax-2 similarities and differences: focus on post-translational modifications and NF-κB activation

Although human T cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients resulting in adult T cell leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have pro...

متن کامل

HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role

Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4+/CD25+ T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tu...

متن کامل

Bcl-3 suppresses Tax-induced NF-κB activation through p65 nuclear translocation blockage in HTLV-1-infected cells.

Human T cell leukemia virus type 1 (HTLV-1) Tax-induced persistent activation of the NF-κB pathway is perceived as the primary cause of adult T cell leukemia (ATL), an aggressive leukemia caused by HTLV-1. Although elevated oncoprotein Bcl-3 levels are found in many HTLV-1-infected T cell lines and ATL cells, the role of Bcl-3 in the malignant pro...

متن کامل

The tumor marker Fascin is strongly induced by the Tax oncoprotein of HTLV-1 through NF-kappaB signals.

Oncogenic transformation of CD4(+) T cells by human T-cell lymphotropic virus type 1 (HTLV-1) is understood as the initial step to adult T-cell leukemia/lymphoma, a process that is mainly initiated by perturbation of cellular signaling by the viral Tax oncoprotein, a potent transcriptional regulator. In search of novel biomarkers with relevance to oncogenesis, we identified the tumor marker and...

متن کامل

HTLV-I Tax regulates the cellular proliferation through the down-regulation of PIP3-phosphatase expressions via the NF-κB pathway.

An oncogenic retrovirus, human T-cell leukemia virus type I (HTLV-I), encodes an oncoprotein, Tax, which plays critical roles in leukemogenesis of adult T-cell leukemia/lymphoma (ATLL) through the pleiotropic actions such as transcriptional regulation, cell cycle control, and transformation. We have previously reported that PTEN and SHIP- 1, PIP3 inositol phosphatases that negatively regulate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017